
Theor Chem Acc (2007) 117: 275–281
DOI 10.1007/s00214-006-0136-y

REGULAR ARTICLE

Shuqiang Niu · Toshiko Ichiye

Probing the structural effects on the intrinsic electronic and redox
properties of [2Fe–2S]+ clusters, a broken-symmetry density
functional theory study

Received: 30 June 2005 / Accepted: 2 December 2005 / Published online: 13 July 2006
© Springer-Verlag 2006

Abstract In biological electron transport chains, [2Fe–2S]
clusters have versatile electrochemical properties and serve
as important electron carriers in a wide variety of biological
processes. To understand structural effects on the variation in
reduction potentials in [2Fe–2S] proteins, a series of [2Fe–
2S] protein analogs with bidentate ligands (−SC2H4NH2)
were recently produced by collision-induced dissociation of
[Fe4S4(L)4]2−(L = SC2H4NH2). Combined with photo-
electron spectroscopy findings, the reaction mechanisms of
[Fe4S4(L)4]2− to [Fe2S2(L)2]− and the structural effects of
ligands on the electronic and redox properties of the [2Fe–2S]
clusters are investigated here using broken-symmetry den-
sity functional theory method. Our calculations suggest that
[Fe2S2(η

2 − L)(cis − L)]− and [Fe2S2(η
2 − L)2]− are the

experimentally observed [2Fe–2S] products, which are gen-
erated via a fission process of [Fe4S4(L)4]2− followed by
rearrangement of ligands of [Fe2S2(L)2]−. Moreover, struc-
tural variation of the ferrous center may dramatically affect
the oxidation energy of the [2Fe–2S] clusters.

1 Introduction

As one of the most ubiquitous and versatile electron carriers,
iron–sulfur clusters play an important role in electron transfer
of biological systems as well as in biosynthetic and bioregu-
latory functions [1–5]. The redox sites of iron–sulfur proteins
usually contain one, two, three, or four iron atoms tetrahe-
drally bound by sulfides and cysteine thiolate residues as well
as other residues. A variety of studies on different clusters
have shown the importance of electrostatic hydrogen bonding
and solvent effects. Among these redox agents, the rhombic
Fe2(μ2 − S)2 core ([2Fe–2S]) demonstrates a multitude of
functions. In particular, the [2Fe–2S] clusters have a remark-
able facility for conversion into more complex and biological
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clusters such as [3Fe–4S], [4Fe–4S], and [8Fe–8S] clusters
[1,6]. In biological electron transport chains, the [2Fe–2S]
units have versatile electrochemical properties with reduc-
tion potentials ranging from −450 to −150 mV versus NHE
for the [Fe2S2]2+/1+ redox couple for standard ferredoxins
[7] (Scheme 1), serving as important electron carriers in a
wide variety of biological processes. The Reiske-type pro-
teins contain a variant cluster, in which two of the ligating
cysteines are replaced by histidines, and have reduction po-
tentials from about −100 to +400 mV [8]. Although various
experimental [8–10] and computational techniques [11–13]
have been concerned with the pH dependence of reduction
potentials of these iron–sulfur clusters, the influence of in-
trinsic factors on the reduction potentials of the [2Fe–2S]
clusters is not fully understood.

A symmetric fission process of doubly charged
[4Fe–4S] cubane anions into two identical singly charged
[2Fe–2S] clusters with both iron sites tri-coordinated was dis-
covered previously [14]. Our previous density functional the-
ory (DFT) studies of the disassembly mechanism of
[Fe4S4Cl4]2− to [Fe2S2Cl2]− suggested that the produced
[2Fe–2S] clusters are low-spin state with S = 1/2, which is
the lowest energy state of the [2Fe–2S] clusters [15]. More re-
cently, the fission of the precursor cubane complexes
[Fe4S4(SEt)4−nLn]2−(n = 0 − 4) into the products, [Fe2S2
(SEt)2−mLm]−(L = –SC2H4NH2, m = 0 − 2), have been
observed by CID and photoelectron spectroscopy experi-
ments [16]. Interestingly, an additional feature was observed
in the spectra of [Fe2S2L2]−, indicating the formation of
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a new isomer with a decrease of 0.55 eV in the oxidation
energy. Although the preliminary DFT calculations suggested
that bidentate coordination of the [2Fe–2S] cluster in which
the NH2 group also coordinates the iron might result in sig-
nificant variations in the oxidation energies, it is necessary
to completely understand how the bidentate ligands stabi-
lize the [2Fe–2S] cluster and affect the electronic and redox
properties of the [2Fe–2S] clusters.

Here we report a detailed broken-symmetry (BS) DFT
study of the structural, electronic, and redox properties of
various possible coordination geometries produced by CID
of [4Fe–4S] cubane complexes in the gas phase, including the
subsequent ligand rearrangement of the [2Fe–2S] clusters.
Combined with available experimental findings in biological
and synthetic systems, we found that the structural variation
of the ferrous center may dramatically affect the reduction po-
tential of the [2Fe–2S] clusters and that the chelated bidentate
ligand on the ferric center significantly stabilizes the clusters.

2 Computational details

Since the experimental observations from Mössbauer and
EPR spectroscopy suggested that the [2Fe–2S] and [4Fe–4S]
clusters are spin-coupled systems [17], the spin polarized or
so-called “broken-symmetry” DFT method (BS-DFT) [18,
19] was utilized for geometry optimization and the investi-
gation of the electronic structure of the complexes. Becke’s
three-parameter hybrid exchange functional [20–22] and the
Lee–Yang–Parr correlation functional (B3LYP) [23] with the
6-31G** basis sets [24–26] were used. The calculated ener-
gies were refined at the B3LYP/6−31(++)SG**//B3LYP/6-
31G** level, where sp-type diffuse functions were added to
the 6-31G** basis set of the sulfur atoms [24–26]. Transition
states (TS) were optimized by an eigenvalue-following opti-
mization method [27,28], in which the final updated Hessian
shows only one negative eigenvalue. No symmetry restraints
were imposed during geometry optimizations.

Generally, spin-coupled systems are well described by
the spin Hamiltonian [29],

Hspin = J
∑

i< j

Ŝi · Ŝ j , (1)

where i and j represent the high-spin sites and J is the
exchange coupling constant. In BS-DFT, the α- and β-spin
electrons are treated separately and have different spatial
Kohn–Sham (KS) orbitals, which result in different electron
density functions ρα and ρβ . Thus, the additional interac-
tions between the opposite spin electrons in different spatial
orbitals can be properly taken into account in the exchange-
correlation energy functional. Although the BS-DFT energy
of a spin-polarized low-spin state is not a pure spin state en-
ergy and instead is a weighted average of pure spin states,
it can be corrected by an approximate spin projection pro-
cedure based on the method developed by Noodleman [30].
However, since the spin projection corrections for the re-
duced and oxidized sites of iron–sulfur protein analogs tend

to cancel each other in the calculated oxidation energies or
relative energies [15,31], the spin projection correction for
the BS-DFT energies was neglected in this work.

The intrinsic reduction-free energy (�G int) of the re-
dox site independent of the protein can be regarded as the
free energy of an oxidation process of a redox site analog in
the absence of solvent and can be obtained by photoelectron
spectroscopy measurement [32,33],

�G int = −ADE = −(VDE + λoxd), (2)

where the adiabatic detachment energy (ADE) is the energy
difference between the reduced and oxidized states, the ver-
tical detachment energy (VDE) is the Frank–Condon energy
required to remove an electron, and λoxd is the oxidant intra-
molecular relaxation or reorganization energy. Theoretically,
these redox properties can be calculated by BS-DFT calcu-
lations. Our previous work showed that the B3LYP method
gives a reliable description of the structural and redox proper-
ties of iron–sulfur clusters with respect to other conventional
ab initio and DFT methods [34]. Furthermore, our recent pho-
toelectron spectroscopy and DFT studies on the tetrahedral
ferric complexes FeIIIX−

4 (X = Cl, Br) and the three-coordi-
nate complexes MIIX−

3 (M = Mn, Fe, Co, Ni; X = Cl, Br)
have shown that increasing the basis set size for all atoms,
for example using triple-ζ basis sets, does not significantly
change the calculated geometric parameters and redox ener-
gies with respect to the experimental data or the calculated
values using double-ζ basis sets [35].

All calculations were performed using the NWChem pro-
gram package [36,37]. The molecular orbital visualizations
were performed using the extensible computational chemis-
try environment (Ecce) application software [38].

3 Results and discussion

[Fe2S2(SEt)2−mLm]−(L = SC2H4NH2; m = 0, 1, 2) were
produced by CID of the [Fe4S4(SEt)4−nLn]2− clusters (L =
–SC2H4NH2, n = 0–4) [16]. First, the precursor cubane
species are discussed, followed by the possible [2Fe–2S] fis-
sion species. Finally, the fission and ligand rearrangement
mechanisms are investigated to evaluate the experimentally
observed products.

3.1 Geometries and electronic structure
of [Fe4S4(SEt)4−nLn]2−(L = –SC2H4NH2, n = 0 and 4)

The geometries and electronic structure of [Fe4S4(SEt)4]2−
and [Fe4S4L4]2− were investigated and compared to
photoelectron spectroscopy study of the precursor cubane
complexes [Fe4S4(SEt)4−nLn]2−(L = –SC2H4NH2, n =
1−4) [16,32]. Although the various cubane clusters demon-
strated very similar spectral patterns, the ADE of
[Fe4S4(SEt)4−nLn]2− significantly increases relative to
[Fe4S4(SEt)4]2− by 0.13–0.37 eV as n goes from 1 to 4.
The structural and energetic properties of [Fe4S4L4]2− have
been calculated with different ligand coordination
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Fig. 1 The B3LYP/6-31G** optimized geometries and the relative energies (kcal/mol) of [Fe4S4(Set)4−nLn]2− (L = –SC2H4NH2, n = 0 and
4). The top layer is the oxidized sublayer of the clusters

patterns since the experimental structure is not known. In
[Fe4S4(trans − L)4]2−, in which the torsion angle � SCCN
is 180◦, L has a quasi-linear conformation and the NH2 group
points away from the cubane core. In [Fe4S4(cis − L)4]2−,
in which the torsion angle � SCCN is −60◦, L has a bent
conformation and the NH2 group points toward the cubane
core. [Fe4S4(η

2−L)4]2− can be generated from [Fe4S4(cis−
L)4]2− by coordination of the NH2 groups with the iron cen-
ters. The B3LYP/6-31G** optimized geometries and the rel-
ative energies are shown in Fig. 1. The experimental and
calculated ADE and VDE are summarized in Table 1.

In [Fe4S4(trans − L)4]2−, there are two intra-molecular
hydrogen bonds between the four NH2 groups. The structure
of the cluster core is very similar to [Fe4S4(SEt)4]2− except
for the Fe–Fe distances on each redox sublayer from 2.86 Å
for [Fe4S4(SEt)4]2− to ∼2.90 Å for [Fe4S4(trans − L)4]2−.
The calculated ADE and VDE of [Fe4S4(trans − L)4]2− in-
crease by 0.16 and 0.13 eV, respectively, relative to those of
[Fe4S4(SEt)4]2−. Since the oxidation of [Fe4S4(SR)4]2− in-
volves a minority spin electron with the σFe−Fe bonding and
σ ∗

Fe−S antibonding characters [31], the oxidation energy of

Table 1 Oxidation energies (eV) of [Fe4S4(SEt)4−nLn]2− and
[Fe2S2(L)2]−(n = 0and4; L = –SC2H4NH2, SEt = SC2H5)

ADEa VDEb

Speciesc,d Exp Cal Exp Cal

[Fe4S4(SEt)4]2− 0.29 (6) 0.19 0.52 (6) 0.48
[Fe4S4(cis − L)4]2− 0.66 (6) 0.63 0.83 (6) 0.98
[Fe4S4(trans − L)4]2− 0.35 0.61
[Fe4S4(η

2 − L)4]2− −0.74 −0.36
[Fe2S2(η

2 − L)(cis − L)]− 2.91 (5) 2.93 3.10 (5) 3.13
[Fe2S2(cis − L)(η2 − L)]− 2.58 2.79
[Fe2S2(η

2 − L)2]− 2.24 (6) 2.10 2.46 (6) 2.37
[Fe2S2(cis − L)2]− 3.36 3.58

a Adiabatic detachment energies. The numbers in the parentheses rep-
resent the uncertainties in the last digit
b Vertical detachment energies. The numbers in the parentheses repre-
sent the uncertainties in the last digit
c In cis − SC2H4NH2, the torsion angle � SCCN is −60◦; in trans −
SC2H4NH2, the torsion angle � SCCN is 80◦; η2 − L = η2 −
SC2H4NH2.
d L1 of [Fe2S2(L1)(L2)]− is the ligand coordinated to the ferric cen-
ter in the reduced state, whereas L1 of [Fe2S2(L1)(L2)]− is the ligand
coordinated to the ferrous center
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the cluster should increase with the decrease in the bonding
interaction of the terminal Fe–S bonds. Because the donor
ability of -SC2H4NH2 is only slightly smaller than that of
–SEt, the major factor contributing to the changes in the
oxidation energy should be the electrostatic effects of the
NH2 groups.

In [Fe4S4(cis − L)4]2−, the NH2 groups are much closer
to the cubane core than those in [Fe4S4(trans − L)4]2−. As
the positive end of the NH2 dipole points toward the negative
core, the oxidized electron of [Fe4S4(cis − L)4]2− is more
significantly stabilized relative to [Fe4S4(trans − L)4]2−
and [Fe4S4(SEt)4]2−, leading to the larger ADE and VDE.
The calculated ADE and VDE of [Fe4S4(cis − L)4]2− in-
crease by 0.44 and 0.50 eV, respectively, relative to those of
[Fe4S4(SEt)4]2−.

Not surprisingly, η2-coordination of the bidentate lig-
ands with the iron centers in [Fe4S4(η

2 − L)4]2− leads to
an unstable structure as the irons are five-coordinated. The
Fe–S bonds of the redox sublayers of [Fe4S4(η2 − L)4]2−
are significantly increased from 2.36 Å in [Fe4S4(SEt)4]2− to
2.41 Å, while the Fe–Fe distances are significantly increased
from 2.86 to 3.11 Å. Upon oxidation of [Fe4S4(η

2 − L)4]2−
to [Fe4S4(η

2 −L)4]−, the chelating interactions of the biden-
tate ligands with the ferric centers dramatically stabilize the
oxidized state, resulting in the negative ADE and VDE of
−0.74 and −0.34 eV, respectively.

Overall, the bidentate ligand L prefers a folded cis-
conformation, [Fe4S4(cis − L)4]2−, which is more stable
by 6.8 and 23.5 kcal/mol than [Fe4S4(trans − L)4]2− and
[Fe4S4(η

2 − L)4]2−, respectively. The calculated ADE and
VDE of [Fe4S4(cis − L)4]2− are 0.63 and 0.98 eV, respec-
tively, in very good agreement with the experimental val-
ues of 0.66 and 0.83 eV. Thus, we suggest that the ligand in
[Fe4S4(SEt)4−nLn]2− acts as a monodentate ligand and that
the electrostatic interaction between the polar amino groups
and the cubane core plays an important role in the variations
in the electron binding energy.

3.2 Fission products [Fe2S2(L)2]−(L = –SC2H4NH2)

Our previous DFT studies of the disassembly mechanism of
[Fe4S4Cl4]2− to [Fe2S2Cl2]− suggested that the fission of the
[4Fe–4S] parent can proceed via a spin-localized intermedi-
ate to generate the [2Fe–2S] clusters with a low-spin state
of S = 1/2 [33]. The simplest possible fission species of
[Fe4S4(cis −L)4]2− would appear to be [Fe2S2(cis −L)2]−
with a low-spin state. However, as the bidentate coordina-
tion of the ligand with FeIII may decrease the fission barrier,
[Fe2S2(η

2 − L)(cis − L)]−, in which the FeIII coordinates
with both the sulfur and the NH2 group of the ligand, also
appears to be a possible fission species. Our DFT calcu-
lations indicate that the fission of [Fe4S4(cis − L)4]2− to
[Fe2S2(cis − L)2]− is almost thermo-neutral, similar to the
[Fe4S4Cl4]2− results [33], whereas the fission of [Fe4S4(cis−
L)4]2− to [Fe2S2(η

2 − L)(cis − L)]− is exothermic by
−24.8 kcal/mol (Fig. 2). The corresponding spin-delocalized
high-spin species (S = 9/2) are less stable by ∼5 kcal/mol
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than the spin-coupled species (S = 1/2). Although two
kinds of fission products have also been observed by the
photoelectron spectroscopy experiments, the calculated ADE
and VDE of [Fe2S2(cis − L)2]− are in disagreement with
the experimental values (Table 1). Moreover, the fission of
[Fe4S4(cis L)4]2− to two other possible products, [Fe2S2
(cis−L)(η2−L)]− and [Fe2S2(η

2−L)2]− (in which the FeII

coordinates with both the sulfur and the NH2 of the ligand), is
calculated to be exothermic by −8.16 and −27.15 kcal/mol,
respectively, but to [Fe2S2(trans−L)2]− is highly endother-
mic by 16.5 kcal/mol. Thus, the distinct energy differences
between these species imply that [Fe2S2(cis − L)2]− and
[Fe2S2(trans − L)2]− are not final fission products in the
experiment.

Of the two most stable isomers, the calculated ADE and
VDE of [Fe2S2(η

2−L)2]− are 2.10 and 2.37 eV, respectively,
in very good agreement with the experimental values of 2.24
and 2.46 eV, respectively, and the calculated ADE and VDE
of [Fe2S2(η

2 − L)(cis − L)]− are 2.93 and 3.13 eV, respec-
tively, also in very good agreement with the experimental
values of 2.91 and 3.10 eV, respectively, (Table 1). Thus,
the DFT energy calculations suggest that [Fe2S2(η

2 − L)
(cis − L)]− and [Fe2S2(η

2 − L)2]− are the experimentally
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Fig. 3 The B3LYP/6-31G** optimized geometries and the relative energies (kcal/mol) via the proposed ligand rearrangement of [Fe2S2L2]−.
The large hollow arrow represents the five majority spins, whereas the small arrow represents a minority spin on the iron center

observed [2Fe–2S] products. We note that the intensity ratio
for the peaks X and X′ (∼0.11) in photoelectron spectroscopy
experiment suggested that ∼10% of the fission product was
isomer [Fe2S2(η

2−L)2]− and∼90% was isomer [Fe2S2(η
2−

L)(cis−L)]− [16]. Although [Fe2S2(η
2−L)2]− is the lowest

energy isomer, the photoelectron spectroscopy indicates that
it is not the predominant species, which suggests that it may
be the result of rearrangement of the ligands of [Fe2S2L2]−.
Overall, it appears that the ligand of [Fe2S2L2]− favors a
chelating coordination with the iron center, especially a fer-
ric center, of the [2Fe–2S] cluster in contrast to that in the
[4Fe–4S] clusters.

3.3 Ligand rearrangement
of [Fe2S2(L)2]−(L = –SC2H4NH2)

Although [Fe2S2(cis−L)2]− and [Fe2S2(cis−L)(η2−L)]−
do not appear as final products experimentally, it is possible

that they may play a role as intermediates whose ligands
rearrange to generate the final observed products. Here, the
possible ligand rearrangement processes are examined, spe-
cifically, the ligand rearrangement of [Fe2S2(cis − L)2]−
through either [Fe2S2(η

2 − L)(cis − L)]− or [Fe2S2(cis −
L)(η2 − L)]− to [Fe2S2(η

2 − L)2]−.

The TS search reveals that the orientation of the NH2
group plays an important role in the ligand rearrangement
of [Fe2S2L2]−. The DFT TS calculations suggest that the
ligand rearrangement from [Fe2S2(cis − L)2]− to [Fe2S2
(η2 − L)2]− or directly from [Fe2S2(η

2 − L)(cis − L)]−
to [Fe2S2(η

2 − L)2]− primarily involve the rotation of the
NH2 group relative to the N–C bond. Overall, the larger
exothermicity of −13.87 kcal/mol of the first chelating step
and the lower barriers of 5.0 and 5.9 kcal/mol along that
reaction route on the left side of Fig. 3 indicate that the
reaction pathway from [Fe2S2(cis − L)2]− through TS1a to
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[Fe2S2(η
2−L)(cis−L)]− followed by TS1b to [Fe2S2(η

2−
L)2]− is not only thermodynamically but also kinetically
more favorable over the one through [Fe2S2(cis − L)(η2 −
L)]− (Fig. 3). Our DFT results suggest that the ligand rear-
rangement from [Fe2S2(η

2 − L)(cis − L)]− to [Fe2S2(η
2 −

L)2]− is slightly exothermic by 1.2 kcal/mol with a barrier
of 5.9 kcal/mol. Thus, this observation apparently indicated
that the rearrangement of [Fe2S2(η

2 − L)(cis − L)]− to
[Fe2S2(η

2 − L)2]− was kinetically controlled (Fig. 3).
Overall, we suggest that the fission of [Fe4S4L4]2− gives

[Fe2S2(η
2 − L)(cis − L)]−, which may subsequently rear-

range to [Fe2S2(η
2 −L)2]−. Although we have not yet inves-

tigated the direct kinetic processes of the fission to each
possible product, [Fe2S2(η

2−L)(cis−L)]− is the most likely
direct fission product as it is the predominantly observed
product experimentally and the barrier for the rearrange-
ment of [Fe2S2(cis − L)2]− to [Fe2S2(η

2 − L)(cis − L)]−
is large enough so that some [Fe2S2(cis − L)2]− should be
observed if it is a significant direct fission product. Moreover,
our proposed mechanism for fission of the spin-delocalized
[Fe4S4Cl4]2− involves spin-localization to ferric and ferrous
centers, so bidentate coordination of the ferric center may
lead to a reduced fission barrier of [Fe4S4L4]2− and a stable
[Fe2S2(η

2 −L)(cis −L)]−. Finally, [Fe2S2(η
2 −L)2]− most

likely occurs via rearrangement of [Fe2S2(η
2−L)(cis−L)]−

as it is the minor species observed experimentally despite its
overall greater stability.

4 Conclusion

Combined with recent experimental finding by CID and pho-
toelectron spectroscopy measurements, the structures, ener-
gies, and reaction processes for the symmetric fission of
[Fe4S4L4]2− and the ligand rearrangement of [Fe2S2L2]−
(L = –SC2H4NH2) have been investigated by DFT calcu-
lations. The –SC2H4NH2 ligand in [Fe4S4L4]2− appears to
act as a monodentate ligand. In conjunction with the experi-
mental findings, the calculations suggested that [Fe2S2(η

2 −
L)(cis −L)]− and [Fe2S2(η

2 −L)2]− are the experimentally
observed [2Fe–2S] products and that [Fe2S2(η

2−L)2]− is the
result of a kinetically controlled rearrangement of
[Fe2S2(η

2 − L)(cis − L)]−.
Overall, the photoelectron spectroscopy and DFT stud-

ies reveal critical structural effects on the intrinsic energy
and redox properties of iron–sulfur protein analogs. First,
the strong bonding interaction between the ferric center and
the bidentate ligand contributes to the stability of [2Fe–2S]
clusters because FeIII prefers tetra-coordination. The ligand
rearrangement of FeIII from the mono- to bidentate coordina-
tion leads to an increase of ∼0.5 eV in the stabilizing energy
and the oxidation energy of [Fe2S2L2]−. Second, although
the ligand rearrangement of the ferrous center of [Fe2S2L2]−
from the mono- to bidentate coordination leads to only a
slight change of ∼0.2 eV in the stabilizing energy, the oxida-
tion energy significantly decreases by ∼0.8 eV with the for-
mation of the tetra-coordinated FeII center. The major factor

contributing to this change in the oxidation energy is that the
ligand rearrangement of the oxidized iron center dramatically
stabilizes the oxidized state, which increases the reducing
capability of the [2Fe–2S]+ clusters.
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